Morgan-Voyce Polynomial Approach for Quaternionic Space Curves of Constant Width
نویسندگان
چکیده
منابع مشابه
On the Morgan-voyce Polynomial Generalization of the First Kind
111 recent years, a number of papers appeared on the subject of generalization of the MorganVoyce (Mr) polynomials (see5 e.g., Andre-Jeannin [l]-[3] and Horadam [4]-[7]). The richness of results in these works prompted our Investigation on this subject. We further generalized the Mpolynomials in a particular way and obtained some new relations by means of the line-sequential formalism developed...
متن کاملGeneralizations of Modified Morgan-voyce Polynomials
In two recent articles [2] and [3], Ferri et al. introduced and studied the properties of two numerical triangles, which they called DFF and DFZ triangles. However, in a subsequent article, Andre-Jeannin [1] showed that the polynomials generated by the rows of these triangles are indeed the Morgan-Voyce polynomials Bn{x) and bn(x), whose properties are well known [10] and [11]; in fact, the pol...
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملOn the degree of the polynomial defining a planar algebraic curves of constant width
In this paper, we consider a family of closed planar algebraic curves C which are given in parametrization form via a trigonometric polynomial p. When C is the boundary of a compact convex set, the polynomial p represents the support function of this set. Our aim is to examine properties of the degree of the defining polynomial of this family of curves in terms of the degree of p. Thanks to the...
متن کاملSome relations between Kekule structure and Morgan-Voyce polynomials
In this paper, Kekule structures of benzenoid chains are considered. It has been shown that the coefficients of a B_n (x) Morgan-Voyce polynomial equal to the number of k-matchings (m(G,k)) of a path graph which has N=2n+1 points. Furtermore, two relations are obtained between regularly zig-zag nonbranched catacondensed benzenid chains and Morgan-Voyce polynomials and between regularly zig-zag ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Foundations of Computing and Decision Sciences
سال: 2021
ISSN: 2300-3405
DOI: 10.2478/fcds-2021-0005